
J Intell Robot Syst (2007) 50:297–319
DOI 10.1007/s10846-007-9166-5

Hybrid Fuzzy Modelling for Model Predictive Control

Gorazd Karer · Gašper Mušič · Igor Škrjanc ·
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Abstract Model predictive control (MPC) has become an important area of research
and is also an approach that has been successfully used in many industrial appli-
cations. In order to implement a MPC algorithm, a model of the process we are
dealing with is needed. Due to the complex hybrid and nonlinear nature of many
industrial processes, obtaining a suitable model is often a difficult task. In this paper
a hybrid fuzzy modelling approach with a compact formulation is introduced. The
hybrid system hierarchy is explained and the Takagi–Sugeno fuzzy formulation for
the hybrid fuzzy modelling purposes is presented. An efficient method for identifying
the hybrid fuzzy model is also proposed. A MPC algorithm suitable for systems
with discrete inputs is treated. The benefits of the MPC algorithm employing the
hybrid fuzzy model are verified on a batch-reactor simulation example: a comparison
between the proposed modern intelligent (fuzzy) approach and a classic (linear)
approach was made. It was established that the MPC algorithm employing the
proposed hybrid fuzzy model clearly outperforms the approach where a hybrid
linear model is used, which justifies the usability of the hybrid fuzzy model. The
hybrid fuzzy formulation introduces a powerful model that can faithfully represent
hybrid and nonlinear dynamics of systems met in industrial practice, therefore, this
approach demonstrates a significant advantage for MPC resulting in a better control
performance.
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1 Introduction

Dynamic systems that involve continuous and discrete states are called hybrid
systems. Most industrial processes contain both continuous and discrete components,
for instance, discrete valves, on/off switches, logical overrides, etc. The continuous
dynamics are often inseparably interlaced with the discrete dynamics; therefore, a
special approach to modelling and control is required. At first this topic was not
treated systematically [24]. In recent years, however, hybrid systems have received a
great deal of attention from the computer science and control community.

The principle of model predictive control (MPC) is based on forecasting the future
behavior of a system at each sampling instant using the process model. The complex
hybrid and nonlinear nature of many processes that are met in practice causes
problems with both structure modelling and parameter identification; therefore,
obtaining a model that is suitable for MPC is often a difficult task. Classic modelling
and especially identification methods that originate from linear-system theory are
inadequate for treating such systems. Hence, the need for special methods and
formulations when dealing with hybrid systems is very clear.

MPC methods for hybrid systems employ several model formulations. Often the
system is described as mixed logical dynamical (MLD) [3]. Piecewise affine (PWA)
formulation [21] is also a widely used representation of hybrid systems in MPC.
The PWA formulation has been proven to be equivalent to many classes of hybrid
dynamical models [8], including the MLD models. The optimal control problem
for discrete-time PWA models can be converted to a mixed-integer optimization
problem and solved online [13]. On the other hand, in [10] the authors tackle the
optimal control problem for PWA models by solving a number of multi-parametric
programs offline. In such manner, it is possible to obtain a solution in the form of a
PWA state feedback law that can be efficiently implemented online.

The aforementioned methods mainly consider systems with continuous inputs, de-
spite the fact that solutions based on (multiparametric) mixed integer linear/quadratic
programming (mp-MIQP/MILP) can be applied to systems with discrete inputs
as well. However, the computational complexity increases drastically with the
number of discrete states, and so these methods can become computationally too
demanding.

In [15], the authors propose a MPC algorithm that uses a PWA model. The
approach employs the concepts of reachable sets combined to a branch and bound
method in the MPC and thus reduces the computational complexity of the QP
needed to be solved in the optimization algorithm.

In case of systems with discrete inputs only, a simpler branch and bound method
can be implemented [16, 17], because there is no need for the QP optimizations and
only a tree of evolution can be used in order to obtain the optimal input sequence.
Due to a lower computational complexity, the algorithm can be implemented in real-
time on many processes.

A fuzzy model represents a powerful universal approximator for nonlinear dy-
namics. A hierarchical identification of a fuzzy switched system is introduced in
[14]. Furthermore, two structure-selecting methods for nonlinear models with mixed
discrete and continuous inputs are presented in [6]. In [18], a fuzzy control method
is implemented in the low control-level for a class of hybrid systems based on hybrid
automata. A nonlinear modelling approach for MPC purposes is presented in [20].
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The authors introduce an analytical predictive-control-law for fuzzy systems. The
modelling and identification methodology is usable for plain nonlinear systems, but
not for the structurally more complex class of hybrid systems.

Nevertheless, most of the previous work related to the MPC of hybrid systems
is based on (piecewise) linear and equivalent models. However, such approaches
can prove unsuccessful when dealing with distinctive nonlinearities. When using a
PWA model, further segmentation is required in order to suitably approximate the
nonlinearity, comparing to a fuzzy model. The new segments introduce new discrete
auxiliary variables in the optimization program, which causes a higher complexity,
often resulting in programs that are computationally too demanding.

The basic idea of this paper is to present an efficient approach for obtaining a
hybrid fuzzy model by means of identifying the unknown system. Some concepts
from the previous work are extended to nonlinear hybrid systems. In the paper a
formulation for a hybrid fuzzy model that is based on a hierarchical structure and
can be written in a compact form is proposed. The discrete part (which is atop the
hierarchy) denotes the operating modes of the system. These can be represented
as a crisp coarse division of the state-space – similar to partitioning in the PWA
framework. The lower level of the hierarchy, i.e. the continuous part of the hybrid
fuzzy model, represents a finer subpartitioning of the state-space within the coarse
partitions of the discrete level. However, the subpartitions (within a partition) are
not divided by crisp borders; the borders between the subpartitions are of a fuzzy
type and are defined by the appropriate membership functions. In such manner, the
fuzzified subpartitions overlap and thus the nonlinear nature of a system (within an
operating mode) is better approximated in the model. In other words, the PWA
framework introduces crisp partitioning of the state-space, whereas in the hybrid
fuzzy model the state-space within individual coarser partitions, which represent the
system’s operating modes, is fuzzyfied. A PWA model can actually be regarded as a
special case of a fuzzy model, i.e. a fuzzy model with crisp membership functions.
To put it another way, the introduction of the hybrid fuzzy model formulation
extends the problem domain by generalizing the PWA approach and therefore
broadening the applicability range. As known from literature [1, 11], a fuzzy model
represents a more powerful universal approximator comparing to a PWA model
for modelling a nonlinear system. The PWA approach needs finer partitioning
of the state-space than the hybrid fuzzy approach to effectively approximate the
nonlinearity, which is a significant advantage of the hybrid fuzzy model regarding the
complexity of the obtained model. We suggest that the proposed hybrid fuzzy model
is suitable for implementation in the MPC of nonlinear hybrid systems with discrete
inputs based on a reachability analysis. By using a more accurate model for the MPC,
a better control performance can be achieved, which is a significant advantage of the
presented approach.

The outline of the paper is as follows. In Section 2 the structure modelling of
a hybrid fuzzy model is discussed. This is followed by Section 3, which deals with
the parameter estimation of the model. In Section 4 an algorithm for the MPC of
systems with discrete inputs based on a reachability analysis is treated. In the fol-
lowing sections, a batch-reactor process is introduced. The modelling and parameter
estimation of the process are tackled and the framework is verified by means of
a simulation experiment. Finally, a comparison between MPC employing a hybrid
linear model and a hybrid fuzzy model is made.
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2 Modelling of a Hybrid Fuzzy Model

Dynamic systems are usually modelled by feeding back delayed input and output
signals. In the discrete-time domain a common nonlinear model structure is the
NARX (nonlinear autoregressive with exogenous inputs) model [19], which gives
the mapping between the past input-output data and the predicted output.

ŷp(k + 1) = F(y(k), y(k − 1), ..., y(k − n + 1), u(k), u(k − 1), ..., u(k − m + 1)) (1)

Here, y(k), y(k − 1), ..., y(k − n + 1) and u(k), u(k − 1), ..., u(k − m + 1) denote
the delayed process output and input signals, respectively. Hence, the model of the
system is represented by the (nonlinear) function F.

In this paper, a special class of systems is addressed, i.e., nonlinear hybrid systems
with discrete inputs. Therefore, in Eq. 1 u stands for the discrete input.

2.1 Hybrid System Hierarchy

As already mentioned, many processes met in practice demonstrate a hybrid nature,
which means that the continuous dynamics are interlaced with the discrete dynamics.
A special class of such systems is called switched systems, where the continuous
states remain continuous even when the discrete states are changed, i.e. no jumps
of the continuous state vector are allowed. In this paper we deal with hybrid
systems represented by a hierarchy of discrete and continuous subsystems where the
discrete part is atop the hierarchy. A discrete-time formulation is described in Eqs. 2
and 3.

x(k + 1) = fq(x(k), u(k)) (2)

q(k) = g(x(k), q(k − 1), u(k)) (3)

Here, x ∈ R
n is the continuous state vector, which includes all relevant system

outputs y (see Eq. 1), i.e. measurable continuous states (delayed and non-delayed)
that influence the state vector in the next time-step. u ∈ R

m denotes the input vector.
q ∈ Q (where Q = {1, ..., s}) is the discrete state, which defines the switching region.
Discrete states are also referred to as operating modes. There are s operating modes
of the hybrid system. The hybrid states are hence described at any time-step k by the
set of states (x(k), q(k)) in the domain R

n × Q.
The local behavior of the model described in Eq. 2 depends on the discrete state

q(k), which defines the current function fq.
Equation 3 introduces a modification of the strict Witsenhausen hybrid system

formulation [25] in the sense that the discrete state q(k) depends on the input vector
u(k) as well as on the continuous state vector x(k) and the previous discrete state
q(k − 1).

The continuous part of the system is generally nonlinear, therefore it can be
modelled as a Takagi–Sugeno fuzzy model, as shown in the sequel.
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2.2 Generalization of the Takagi–Sugeno Formulation for a Nonlinear
Hybrid System

In order to approximate a nonlinear system, a fuzzy formulation can be employed.
Fuzzy models can be regarded as universal approximators, which can approximate
continuous functions to an arbitrary precision [5, 7].

The system dynamics can be formulated as a Takagi–Sugeno fuzzy model. In order
to address nonlinear hybrid systems, we have generalized the model formulation by
incorporating the discrete part of the system dynamics given in Eq. 3 in the rule base.
In this instance, the rule base of the hybrid fuzzy system is represented in Eq. 4.

R jd :
if q(k) is Qd and y(k) is A j

1 and ... and y(k − n + 1) is A j
n

then ŷp(k + 1) = f jd(y(k), ..., y(k − n + 1), u(k), ..., u(k − m + 1))

for j = 1, ..., K and d = 1, ..., s

(4)

The if-parts (antecedents) of the rules describe hybrid fuzzy regions in the space
of the input variables of the hybrid fuzzy model. Here, q(k) ∈ {1, ..., s} stands for the
discrete state of the nonlinear hybrid system, i.e., its operating mode. Qd and A j

i
represent (fuzzy) sets characterized by their crisp and fuzzy membership functions,
respectively. The then-parts (consequences) are functions of the inputs of the hybrid
fuzzy model. Here ŷp(k + 1) is an output variable representing the predicted output
of the process in the next time step. There is one function of inputs fjd defined for
each rule R jd; j = 1, ..., K and d = 1, ..., s in the hybrid fuzzy model. In general, fjd

can be a nonlinear function. However, usually an affine function fjd is used, as shown
in Eq. 5. Here, a1 jd, ..., anjd, b1 jd, ..., bmjd and rjd denote consequent parameters, all
corresponding to the rule R jd.

f jd(y(k), ..., y(k − n + 1), u(k), ..., u(k − m + 1)) =
= a1 jd y(k) + ... + anjd y(k − n + 1) +

+ b 1 jd u(k) + ... + b mjd u(k − m + 1) + r jd (5)

The number of relevant rules in the hybrid fuzzy model is K · s. Generally
speaking, K depends on the number of fuzzy membership functions for each
antecedent variable y(k), ..., y(k − n + 1), u(k), ..., u(k − m + 1). The membership
functions have to cover the whole operating area of the system. What is more, the
rules have to distinguish all possible combinations of the membership functions in
the antecedent variable space. Hence, K is a product of the number of membership
functions corresponding to each antecedent variable y(k), y(k − 1), ..., y(k − n + 1),

u(k), ..., u(k − m + 1). Note that there are K fuzzy sets A j
i as the appurtenant

membership functions are the same for every rule R jd, regardless of d. On the other
hand, s denotes the number of operating modes of the nonlinear hybrid system, which
is also the number of crisp membership functions characterizing the sets Qd.
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The output of the hybrid fuzzy model in a compact form is given by the following
equation.

ŷp(k + 1) = β(k) �T(k) ψ(k) (6)

Here, β(k) = [β1(k) β2(k) ... βK(k)] represents the normalized degrees of fulfill-
ment for the whole set of fuzzy rules ( j = 1, ..., K) in the current time-step k. β j(k),
which corresponds to a set of rules R jd for every d = 1, ..., s, is obtained by using a
T-norm [22]. In our case it is a normalized algebraic product of the membership
values μA j

1
(y(k)) ... μA j

n
(y(k − n + 1)) [1, 2, 22].

In Eq. 6, �(k) denotes a matrix with n + m + 1 rows and K columns, which
contains the consequent fuzzyfied parameters of the hybrid fuzzy model in the
current time-step k. As noted in Eq. 7, �(k) is actually a function of the discrete
state of the hybrid fuzzy system in the current time-step q(k).

�(k) = �(q(k)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�1 if q(k) = 1
...

...

�d if q(k) = d
...

...

�s if q(k) = s

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(7)

The matrices �d contain the consequent fuzzyfied parameters of the hybrid fuzzy
model for each operating mode (q = d ∈ {1, ..., s}), individually. We assume the set
of matrices �d to be time-invariant.

Each matrix �d contains all the consequent fuzzyfied parameters of the hybrid
fuzzy model for the set of hybrid fuzzy rules {R jd}, where d is fixed and j = 1, ..., K.
A matrix �d is made up of K columns � jd = [a1 jd ... anjd b 1 jd ... b mjd r jd]T .

In Eq. 6, ψ(k) = [y(k) · · · y(k − n + 1) u(k) · · · u(k − m + 1) 1]T denotes a re-
gressor in time-step k, which contains all the relevant model inputs that are needed
in f jd.

In general, hybrid fuzzy models can have multiple inputs1 and outputs. When
modelling a multiple-output process, several single-output models in parallel can
be used instead, without any loss of generality. Similarly, when dealing with higher-
than-first-order processes (n > 1), it is generally more appropriate to employ several
(simpler) first-order models running in parallel in place of a single nth-order model,
provided it is possible to measure the relevant system states, which substitute the
system outputs from the past time-steps y(k − 1), ..., y(k − n + 1) needed to predict
ŷp(k + 1). If such first-order models are not feasible, it is still suitable to employ
several lower-than-nth-order models instead. To put it another way, it is generally
reasonable to make use of all the available data measured in a single time-step.
However, due to unmeasurable system states it is not always possible to carry out
such an approach.

1If the system has several inputs, the regression vector is simply extended so as to include all the
relevant model inputs.
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3 Identification of the Hybrid Fuzzy Model

To identify a hybrid fuzzy system means to obtain the hybrid fuzzy model parameters
a1 jd, ... , anjd, b 1 jd, ... , b mjd and r jd for each rule R jd; j = 1, ..., K and d = 1, ..., s.
To put it another way, all the matrices �d have to be established.

The regression matrix � jd = [β j(k1) ψT(k1) · · · β j(kPjd) ψT(kPjd)]T for the rule
R jd is obtained by using the whole set of input data for the hybrid fuzzy system. Here,
index k runs from k1 to kPjd, where Pjd denotes the number of input-output data pairs
corresponding to the rule R jd. However, only data from time-steps k that comply
with the conditions q(k) = d and β j(k) ≥ δ2 are actually used for constructing the
regression matrix � jd. Since the model parameters are obtained by matrix inversion ,
compliance with the condition on β j(k) is essential for obtaining suitably conditioned
matrices.

The output variable of the system y is included in the output data vector Yjd =
[β j(k1) y(k1 + 1) · · · β j(k1) y(kPjd + 1)]T , which corresponds to the rule R jd. Again,
only data from time-steps (k + 1) that comply with the conditions q(k) = d and
β j(k) ≥ δ are actually used for constructing the output data vector Yjd.

The hybrid fuzzy model is established by calculating the model parameters
for the whole set of rules R jd; j = 1, ..., K and d = 1, ..., s using the least-squares
identification method � jd = (�T

jd� jd)
−1�T

jdYjd.
The parameters of the hybrid fuzzy model are estimated on the basis of measured

input-output data using the least-squares identification method. The approach is
based on decomposition of the data matrix � into K · s submatrices � jd. Hence, the
parameters for each rule R jd ( j = 1, ..., K and d = 1, ..., s) are calculated separately.
Due to better conditioning of the submatrices � jd, compared to the conditioning of
the whole data matrix �, this approach leads to a better estimate of the hybrid fuzzy
parameters, or to put it another way, the variances of the estimated parameters are
smaller compared to the classic approach given in the literature [1, 2, 22, 23].

The model parameters can be used directly to predict the behavior of the system
in MPC, while the controller has to adapt to the dynamic changes online.

4 Model Predictive Control of Systems with Discrete Inputs Based
on a Reachability Analysis

Model predictive control is an approach where a model of the system is used to
predict the future evolution of the system [4, 12]. The most appropriate input vector
is established and applied for every time-step. Its determination is an optimization
problem that is solved within a finite horizon H, i.e., for a pre-specified number of
time-steps ahead. For each time-step k a sequence of optimal input vectors (8) is
acquired, which minimizes the selected cost function while considering the eventual
constraints of the inputs, outputs and system states. However, only the first vector
of the optimal sequence is actually applied during the current time-step. In the next
time-step, a new optimal sequence is determined, etc.

Uk+H−1
k = {

u(k), u(k + 1), ..., u(k + H − 1)
}

(8)

2Here, δ denotes a small positive number.
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4.1 Tree of Evolution

Since the proposed control algorithm is limited to systems with discrete inputs only,
the possible evolution of the system over time-steps h up to a maximum prediction
horizon H can be illustrated by a tree of evolution, as shown in Fig. 1 for H = 4 and 3
input vectors. The nodes of the tree represent reachable states, and branches connect
two nodes if a transition exists between the corresponding states.

For a given root-node V1, representing the initial state xi = x(k|k) and qi = q(k|k),
the reachable states are computed and inserted in the tree as nodes Vi, where i
indexes the nodes as they were successively computed. The notation (k1|k2) denotes
the time-step of the current node in the MPC algorithm (k1) and the time-step, in
which the algorithm started (k2), i.e. the actual time-step in the control-process.

A cost value Ji is associated with each new node, and based on the cost value the
most promising node is selected. After labelling the node as explored, new reachable
states emerging from the selected node are computed. The construction of the tree
of evolution continues upwards first until one of the following conditions occurs:

– The value of the cost function (see Section 4.4) at the current node is greater
than the current optimal one (Ji � Jopt).3

– The maximum step horizon has been reached (h = H).

If the first condition occurs, the node is labelled non-promising and thus elimi-
nated from further exploration. On the other hand, if the node satisfies the second
condition only, it becomes the new current optimal node (Jopt = Ji), whereas the
sequence of input vectors leading to it becomes the current optimal one.

The exploration continues from the topmost step horizon, where unexplored
nodes can be found, etc., until all the nodes are explored and the optimal input vector
uopt(k) can be derived from the current optimal sequence. The optimal input vector
is applied to the system uopt(k) and the whole procedure is repeated at the next time
step k + 1.

4.2 Complexity of the Control Problem

The complexity of the control problem with discrete inputs is primarily subject to
the maximum prediction horizon (H) and the number of discrete inputs with the
associated possible input values. Let us denote the first input u1 and the associated
number of discrete values m1 (and so on). Let us assume there are l inputs. Since
there are no continuous inputs, the number of combinations of input-vector values is
M0 = m1 · ... · ml . The worst-case complexity of the system is therefore proportional
to C0 = MH

0 . The complexity grows exponentially with the number of combinations
of input-vector values M0 and the maximum prediction horizon H.

Due to physical and technological constraints it is usually possible to select only
a limited number (M) of combinations of input-vector values, where M < M0.
The worst-case complexity of the same control problem and consequently the time

3Before beginning the exploration of the tree of evolution, the initial value of the current optimal
node is set to infinity Jopt = ∞.
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Fig. 1 Example of an explored
tree of evolution. The optimal
node is V14, therefore the
input uopt = u2 is selected
and applied
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needed to solve the optimization problem can thus be reduced by the factor shown
in Eq. 9.

CM

C0
=

(
M
M0

)H

(9)

4.3 Reachability Analysis

Generally, it is not always possible to apply every input vector from the selection
mentioned above, e.g. branch u1 from node V4 (see Fig. 1). Some of the input
vectors, for instance, may lead the system into undesirable states. In every time-
step, such input vectors must be detected and omitted, which can be done by means
of a reachability analysis. However, many of the reachable states do not lead to an
optimal solution or, to put it another way, a better solution has already been found.
Therefore, it is reasonable to detect and eliminate such non-promising4 states from
further exploration as early as possible, in order to reduce the complexity of the
control problem. The algorithm is a kind of branch and bound procedure, which
involves the generation of a tree of evolution that was described in Section 4.1.

The inputs, outputs and system states can be constrained for a number of reasons
(either physical constraints due to the nature of the system, or constrains in con-
nection with quality or safety in control). The physical constraints must be included
in the model and are considered when building the tree of evolution by means of
reachability analysis. On the other hand, the control-related constraints are usually
considered in the cost function.

4.4 Cost Function

Cost-function selection has a great influence on the behaviour of the system, on
the size of the fully explored tree of evolution, and hence on the computational

4Non-promising states are states that are definitely not leading to the optimal solution of the control
problem.
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complexity of the control problem. Generally, the cost function can be described
as in Eq. 10.

Ji = J
(

Xk+h−1
k , Qk+h−1

k , Uk+h−2
k , k, h

)

for h = 1, 2, ..., H; where

Xk+h−1
k = {

x(k), x(k + 1), ..., x(k + h − 1)
} ;

Qk+h−1
k = {q(k), q(k + 1), ..., q(k + h − 1)} ;

where x is the vector of continuous states

and q is the discrete state of the system. (10)

As stated in Section 4.1, it is desirable to detect and eliminate the non-promising
states from further exploration as early as possible. Since the detection is based on
comparing Ji to Jopt, it must be ensured that no better solution than the current
optimal one can be found by continuing the exploration from the eliminated node.
Therefore, the cost value has to be monotonically increasing with the prediction-step
h, as in Eq. 11.

J
(

Xk+h−1
k , Qk+h−1

k , Uk+h−2
k , k, h − 1

)
�

� J
(

Xk+h
k , Qk+h−1

k , Uk+h−1
k , k, h

)
; for h = 2, 3, ..., H. (11)

In Eqs. 12, 13, and 14 we have proposed a universally usable form of cost function
that can easily be applied to most of the systems met in practice.

J
(

Xk+h
k , Qk+h−1

k , Uk+h−1
k , k, h

)
=

= J
(

Xk+h−1
k , Qk+h−1

k , Uk+h−2
k , k, h − 1

)
+

+ f (x(k + h|k), q(k + h|k), u(k + h − 1|k), k, h)

for h = 1, 2, ..., H (12)

f (x(k + h|k), q(k + h|k), u(k + h − 1|k), k, h) � 0

for h = 1, 2, ..., H (13)

J
(
Xk

k , Qk
k, {} , k, 0

) = 0

for h = 0 (14)

The function f (13) is an arbitrary non-negative function that estimates the quality
of control. Its value is added to the sum of the cost functions calculated along the
path from the root-node to the current node in the tree of evolution. Function
f basically penalizes the predicted deviations of system states from the reference
trajectory (e.g., by calculating the sum of pondered squares of deviations), therefore,
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the cost-function value increases more rapidly along non-optimal paths in the tree of
evolution. Since the function f does not have any special requirements apart from
Eq. 13, it is relatively easy to determine a suitable cost function for an actual problem.

It is trivial to prove that the proposed cost function complies with condition 11.

4.5 Holding the Inputs Through a Number of Time-Steps

The maximum time of prediction reached in the control algorithm Tpred = H · TS

depends on two parameters: the sampling time TS and the maximum prediction
horizon H.

Since the sampling time TS is determined by factors that in most cases can not
be changed,5 the only way to reach a longer time of prediction Tpred seems to be by
increasing the maximum prediction horizon H. However, as stated in Section 4.2, by
doing that the complexity of the control problem increases drastically.

In many cases it is possible (or even recommendable) not to change the input-
vector values each sampling time. For instance, when the sampling time is relatively
short, actuators could get overloaded. For this reason we have proposed an approach
where the same input-vector values are kept through several (Z ) time-steps or, to put
it another way, the input-vector values can change only every Z time-steps.

In this case the maximum reachable time of prediction is determined as Tpred =
TS · Z · HZ . Here, HZ = H/Z is the new maximum prediction horizon required to
reach the desired maximum time of prediction Tpred.

The complexity of the control problem (provided Tpred is constant) can thus be
reduced by the factor shown in Eq. 15, or rather, a longer time of prediction Tpred

can be reached, whereas the complexity increases linearly instead of exponentially.

CZ

CM
= (M · Z )HZ

MH
=

(
Z

MZ−1

)HZ

(15)

By holding the inputs through Z time-steps several objectives can be achieved.

– Decrease the maximum prediction horizon H required to reach the desired
maximum time of prediction Tpred and thus reduce the complexity of the control
problem.

– Enable a longer maximum time of prediction Tpred (with the same equipment).
– Enable a shorter sampling time TS while retaining the maximum time of predic-

tion Tpred (on the same equipment).
– Relieve the potentially overloaded actuators.

We believe that holding the inputs through Z time steps can improve the control
for a class of systems, where changing the input vector every sample time is not
needed or wanted, e.g., when the fast dynamics of a stiff system is insignificant for the
control performance. As mentioned, the optimal value of the parameter Z depends
on the system. The higher the value of Z , the lower the maximum frequency of input
changes and vice versa. Fine tuning of the parameter Z can be done by means of a
simulation.

5E.g., the dynamics of the system, the accuracy of prediction needed and the eventual sampling time
of the sensors used, etc.
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Due to a longer reachable maximum time of prediction Tpred, we expect that
increasing Z should improve the control performance. On the other hand, further
increasing of Z beyond the optimum is expected to cause a deterioration of the
control performance, which happens because the inputs do not change frequently
enough to ensure a satisfactory control [9].

5 Batch Reactor

The usability of the control algorithm in combination with the hybrid fuzzy model
has been verified on a simulation example of a real batch reactor that is situated in
a pharmaceutical company and is used in the production of medicines. The goal is
to control the temperature of the ingredients stirred in the reactor core so that they
synthesize into the final product. In order to achieve this, the temperature has to
follow the reference trajectory given in the recipe as accurately as possible.

A scheme of the batch reactor is shown in Fig. 2. The reactor’s core (temperature
T) is heated or cooled through the reactor’s water jacket (temperature Tw). The
heating medium in the water jacket is a mixture of fresh input water, which enters the
reactor through on/off valves, and reflux water. The water is pumped into the water
jacket with a constant flow φ. The dynamics of the system depend on the physical
properties of the batch reactor, namely, the mass m and the specific heat capacity c
of the ingredients in the reactor’s core and in the reactor’s water jacket (here, index w

denotes the water jacket). λ is the thermal conductivity, S is the contact area and T0

is the temperature of the surroundings. Furthermore, Tin denotes the temperature of
the fresh input water, whereas TC = 12◦C and TH = 75◦C stand for the cool and hot
input water temperatures, respectively. kH and kC denote the position of the on/off
valves for hot and cool input water, while kM is the position of the mixing valve.

The temperature of the fresh input water Tin depends on two inputs: the position
of the on/off valves kH and kC. However, there are two possible operating modes
of the on/off valves. In case kC = 1 and kH = 0, the input water is cool (Tin = TC),
whereas if kC = 0 and kH = 1, the input water is hot (Tin = TH).

The ratio of fresh input water to reflux water is controlled by the third input, i.e.,
by the position of the mixing valve kM. There are six possible ratios that can be set

Fig. 2 Scheme of the batch
reactor

TC TH

Tin

kM Φ (1 – kM)

Φ m, c, T
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mw , cw
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kMΦ 
kHkC

T0
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by the mixing valve. The fresh input water share can be either 0, 0.01, 0.02, 0.05,
0.1 or 1.

We are therefore dealing with a multivariable system with three discrete inputs
(kM, kH and kC) and two measurable outputs (T and Tw).

Due to the nature of the system, the time constant of the temperature in the water
jacket is obviously much shorter than the time constant of the temperature in the
reactor’s core. Therefore, the batch reactor is considered as a stiff system.

5.1 Modelling and Identification of the Batch Reactor

In order to apply the proposed hybrid fuzzy model structure, we first have to
decompose the system to simpler MISO subsystems and establish the appropriate
operating modes. On the other hand, it is also feasible to construct a model that
includes the whole dynamics of the batch reactor (without first dividing it into
submodels) and estimate all its parameters at once. However, since the model
parameters are obtained by matrix inversion, this could result in numerical problems
due to bad conditioning of the matrices used in identification. In addition, more para-
meters would be estimated simultaneously, which impairs the quality of identification
results. By using the hybrid fuzzy model structure proposed in the sequel, we have
the advantage of avoiding the possible numerical problems in identification.

The model of the batch reactor is obtained in two steps.

– The multivariable system is divided into simpler MISO subsystems.
– Each discrete-time submodel is identified individually.

The heat-flow in the reactor system can be divided as follows.

– Heat conduction between the reactor’s core and the reactor’s water jacket.
– Heat conduction between the reactor’s water jacket and the surroundings.
– Heat convection due to an influx of fresh input water into the reactor’s water

jacket.
– Heat convection due to outflow of the heating medium from the reactor’s water

jacket.

In this manner it is possible to divide the unknown system into simpler MISO sub-
systems and thus apply some prior knowledge of the system in the modelling. Hence,
such an identification of the unknown system is regarded as gray-box identification.

In order to carry out the identification, suitable input-output data of the batch-
reactor process have to be obtained. Therefore, we generated a discrete pseudo-
random signal for kM

6 and an independent binary pseudo-random signal for kH and
kC and recorded the obtained input-output data. A sampling time of TS = 10 s was
used. The input signals have to cover the whole frequency and amplitude range of the
system that we are interested in. This way, the identification data can characterize the
complete dynamics of the system.

The time needed to acquire the data used for identification was longer than one
batch cycle. However, this does not affect the dynamics of the system, because there

6The signal was generated using a pseudo-random mechanism that switches the possible values of
kM and holds a value for the duration of a pseudo-random number of time-steps.
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Fig. 3 Core temperature T
(solid line) and water-jacket
temperature Tw (dotted line)
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are no endo- or exothermic reactions in the reactor. The reactor core contains gran-
ulated material that is stirred, heated and cooled in order to produce a homogenous
compound.

We recorded the measurable outputs, i.e., the reactor’s core temperature T and
the reactor’s water-jacket temperature Tw. The outputs are shown in Fig. 3. A close-
up is shown in Fig. 4.

5.2 Temperature in the Reactor’s Core

The temperature in the reactor’s core is influenced only by the heat conduction
between the reactor’s core and the reactor’s water jacket, which depends on the
temperature difference between the reactor’s water jacket Tw and the reactor’s core
T. Therefore, a first-order MISO submodel can be presumed, as shown in Eq. 16.

Fig. 4 Core temperature T
(solid line) and water-jacket
temperature Tw (dotted line)
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Here, the regressor consists of the temperature in the water jacket Tw(k) and the
temperature in the core T(k) in the current time-step.

T̂(k + 1) = f (Tw(k), T(k)) (16)

Since we have surmised that the heat conduction is proportional to the temper-
ature difference between the reactor’s core and the reactor’s water jacket, we can
presume a linear model, as in Eq. 17.

T̂(k + 1) = �T [
Tw(k) T(k)

]T (17)

After conducting a least-squares identification we obtain the system pa-
rameters �.

� = [0.0033 0.9967]T (18)

5.3 Temperature in the Reactor’s Water Jacket

The temperature in the reactor water jacket Tw is influenced by all the heat-flow
sources previously mentioned. Therefore, a MISO submodel can be presumed, as
shown in Eq. 19. Here, the regressor consists of the values in the current time-step k
of the temperature in the water jacket Tw(k), the temperature in the core T(k), the
fresh input water inflow at the mixing valve kM(k), and the position of the cold-water
and hot-water on/off valves kC(k) and kH(k), respectively.

T̂w(k + 1) = F(Tw(k), T(k), kM(k), kC(k), kH(k)) (19)

The modelling and parameter estimation of the subsystem were carried out in a
similar manner to that described in Sections 2.2 and 3.

Fig. 5 Membership functions
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Let us assume two operating modes of the subsystem (s = 2).

– The first operating mode (q = 1) is the case when the fresh input water is hot,
i.e., kC(k) = 0 and kH(k) = 1.

– The second operating mode (q = 2) is the case when the fresh input water is cool,
i.e., kC(k) = 1 and kH(k) = 0.

By further subdividing the MISO model in Eq. 19 we have established the discrete
part of the hybrid fuzzy model, which is given in Eq. 20.

q(k) = q(kC(k), kH(k)) =
{

1 if kC(k) = 0
∧

kH(k) = 1
2 if kC(k) = 1

∧
kH(k) = 0

}

(20)

Next, the membership functions have to be defined. The system is fuzzyfied with
regard to the temperature in the reactor’s water jacket Tw(k). Simple triangular
functions are used, as shown in Fig. 5.

Such a form of the membership functions ensures that the normalized degrees of
fulfillment β j(Tw) are equal to the membership values μ j(Tw) across the whole op-
erating range for each rule R jd, respectively. In this case, there are five membership
functions (K = 5), with maximums at 12, 20, 40, 60 and 70◦C, so that the whole
operating range is covered. In general, membership partitioning can also be done
using a clustering algorithm [1].

The rule base of the hybrid fuzzy model is hence given in Eq. 21. We presume that
a local system corresponding to an individual rule R jd is affine.

R jd :
if q(k) is Qd and Tw(k) is A j

1

then Tw(k + 1) = a1 jdTw(k) + a2 jdT(k) + b 1 jdkM(k) + r jd

for j = 1, ..., 5 and d = 1, 2

(21)

The output of the hybrid fuzzy model corresponding to rule R jd can therefore be
formulated as in Eq. 22.

T̂ jd
w (k + 1) = �T

jd

[
Tw(k) T(k) kM(k) 1

]T (22)

After conducting a least-squares identification for each rule R jd respectively (see
Section 3), we obtain the matrices with the system parameters below for both
operating modes (�1 for q = 1 and �2 for q = 2).

�1 =

⎡

⎢
⎢
⎣

0.9453 0.9431 0.9429 0.9396 0.7910
0.0376 0.0458 0.0395 0.0339 0.0225

19.6748 16.7605 10.5969 3.9536 1.6856
0.3021 0.2160 0.5273 1.2701 12.0404

⎤

⎥
⎥
⎦ (23)
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�2 =

⎡

⎢
⎢
⎣

0.9803 0.9740 0.9322 0.9076 0.8945
0.0025 0.0153 0.0466 0.0466 0.0111

−0.0704 −0.6956 −7.8013 −12.2555 −18.7457
0.2707 0.2033 0.5650 1.9179 5.6129

⎤

⎥
⎥
⎦ (24)

To sum up, the output of the model of the temperature in the reactor’s water
jacket is written in a compact form in Eq. 25.

T̂w(k + 1) = β(k) �T(k)
[
Tw(k) T(k) kM(k) 1

]T (25)

6 Control

In this section, we carry out a simulation study and verify the proposed approach.
In addition, we compare a modern intelligent (fuzzy) approach to a classic (linear)
approach in MPC and show the advantages of the former.

In order to conduct the experiment, we first have to establish the input matrix P,
which contains every allowed combination of input-vector values (see Eq. 26). Here,
each column represents an input vector. The rows of the respective input vectors
have the following meaning.

– The first row denotes the mixing-valve input kM ∈ {0, 0.01, 0.02, 0.05, 0.1, 1}.
– The second row denotes the cool-water on/off valve input kC ∈ {0, 1}.
– The third row denotes the hot-water on/off valve input kH ∈ {1, 0}.

P =
⎡

⎣
0 0.01 0.02 0.05 0.1 1 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0

⎤

⎦ (26)

In the last step we establish a suitable cost function (see Section 4.4). According
to the prepositions in Eqs. 12, 13 and 14, a simple cost function that takes into
consideration the square of deviation of the core temperature T from the reference
temperature Tref, is given in Eq. 27. In such a manner the control performance can
be quantitatively estimated along the tree of evolution.

J
(

Xk+h
k , Qk+h

k , Uk+h−1
k , k, h

)
=

= J
(

Xk+h−1
k , Qk+h−1

k , Uk+h−2
k , k, h − 1

)
+ (T(k + h) − Tref(k + h))2 (27)

The results of the experiment are shown in Figs. 6 and 7. The maximum prediction
horizon was HZ = 4 and the number of time-steps, through which the inputs are
held, was Z = 15.

We can ascertain that the reference temperature Tref was well followed by the
actual core temperature T. However, there are still three obvious aspects where
improvement is needed.

– The valves were moving too much.
– In several time-frames the control was carried by the on/off valves, whereas the

mixing valve was relatively open. However, such behavior had been expected, for
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Fig. 6 Core temperature T
(solid line) and reference
temperature Tref (dotted line)
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the on/off valves can be regarded as another mixing valve, which has a greater
influence on the core temperature T than the actual mixing valve.

– The total consumption of fresh input water was too high. Again, this is due to the
fact that the mixing valve was fully open for too long during the experiment.

We tried to improve the problematic aspects of the control by including a sort of
penalty for the movement of the valves in the cost function in Eq. 27. The modified
cost function is established in Eq. 28.

J
(

Xk+h
k , Qk+h

k , Uk+h−1
k , k, h

)
= J

(
Xk+h−1

k , Qk+h−1
k , Uk+h−2

k , k, h − 1
)

+
+ w1 · (T(k + h) − Tref(k + h))2 +
+ w2 · (kC(k + h) · kH(k + h − 1)) +
+ w3 · |kM(k + h) − kM(k + h − 1)| · kH(k + h − 1)

(28)

Fig. 7 Other system states
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Fig. 8 Core temperature T
(solid line) and reference
temperature Tref (dotted line)
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The summands in the cost function were weighted as follows.

– The square of the deviation of the core temperature T from the reference
trajectory Tref was weighted according to the choice of the parameter Z , in order
to enable the control performance comparison among simulations employing
different Z . w1 = 1

Z .
– w2 weights the event of changing fresh input water from hot to cool. This

prevents the changes of the on/off valves when there is no negative step in the
reference temperature signal Tref. The weight was set as high as possible, but
low enough to allow the on/off valves to change when a reference step occurs.
w2 = 15.

– Next, w3 was decreased, so that the control would not be taken over exclusively
by the on/off valves. w3 = 0.03.

The results of the experiment are shown in Figs. 8 and 9.

Fig. 9 Other system states
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Fig. 10 Core temperature T
(solid line) and reference
temperature Tref (dotted line)
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We can ascertain that the reference temperature Tref was again well followed by
the actual core temperature T. What is more, by setting the cost function correctly,
all three problematic aspects of the control were satisfactorily solved.

6.1 Comparison Between MPC Employing a Hybrid Fuzzy Model and a Hybrid
Linear Model

In order to compare MPC employing a hybrid fuzzy model to MPC employing a
hybrid linear model, we have to attain the linear model for the temperature in the
reactor’s water jacket (see Eq. 19). The linear model can easily be derived from the
fuzzy model by linearizing it close to the center of the fuzzyfied operating range.
In other words, we have used a fixed degree of fulfillment vector β = [0 0 1 0 0].
Therefore, only one of the fuzzy regions was taken into account when establishing

Fig. 11 Other system states
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Fig. 12 Core temperature T:
comparison between hybrid
fuzzy model and hybrid linear
model employed in MPC.
Tref = 62◦C
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the linear model. In this sense, the model parameters are given in Eqs. 29 and 30,
whereas the output is obtained according to Eq. 31.

�1,lin = [0.9429 0.0395 10.5969 0.5273]T (29)

�2,lin = [0.9322 0.0466 − 7.8013 0.5650]T (30)

T̂w(k + 1) =
⎧
⎨

⎩

�T
1,lin [Tw(k) T(k) kM(k) 1]T if kC = 0

∧
kH = 1

�T
2,lin [Tw(k) T(k) kM(k) 1]T if kC = 1

∧
kH = 0

⎫
⎬

⎭
(31)

The results of the experiment with the linear model employed in MPC are shown
in Figs. 10 and 11. Again, the cost function in Eq. 28 was used.

Fig. 13 Core temperature
T: comparison between hybrid
fuzzy model and hybrid linear
model employed in MPC.
Tref = 26◦C
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Fig. 14 Core temperature
T: comparison between hybrid
fuzzy model and hybrid linear
model employed in MPC.
Tref = 35◦C
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A close-up of the relevant sections is presented in Fig. 12, where the reference
temperature is Tref = 62◦C, and in Fig. 13, where the reference temperature is Tref =
26◦C. We can conclude that the MPC algorithm employing the hybrid fuzzy model
clearly outperforms the case where the linear model is used.

In the third part of the experiment, where the reference temperature is Tref =
35◦C, the hybrid linear model approximates the identified system more adequately.
The control performance is therefore more comparable to the case in which the
hybrid fuzzy model is employed. That said, still better performance is achieved in
the latter case, as can be seen in Fig. 14.

7 Conclusion

A hybrid fuzzy modelling approach for the MPC of nonlinear hybrid systems with
discrete inputs based on a reachability analysis was treated. In order to implement
a MPC algorithm, a suitable model of the process we are dealing with is needed.
In the paper, a hybrid fuzzy modelling approach with a compact formulation was
introduced. The hybrid system hierarchy was explained and the generalized Takagi–
Sugeno fuzzy formulation for the hybrid fuzzy modelling purposes was presented.
An efficient method for identifying the hybrid fuzzy model was also discussed.

A MPC algorithm suitable for systems with discrete inputs was treated. The
benefits of the MPC algorithm employing a proposed hybrid fuzzy model was verified
on a batch-reactor simulation example. The results suggest that satisfactory control
can be attained, even when dealing with complex hybrid-nonlinear-stiff systems such
as the batch reactor. Finally, we compared the proposed modern intelligent (fuzzy)
approach to a classic (linear) approach. It was established that the MPC algorithm
employing the proposed hybrid fuzzy model clearly outperforms the approach where
a hybrid linear model is used.

The hybrid fuzzy formulation introduces a powerful model that can faithfully rep-
resent hybrid and nonlinear dynamics of systems met in industrial practice and can
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be established by means of an identification. Therefore, this approach demonstrates
a significant advantage for MPC resulting in a better control performance.
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